
NetProtect
Encrypt.Me

Final Report

Document Name: Final Report

Date: Sept. 18, 2019

Customer Contact: Wayne MacLaurin <wayne.maclaurin@netprotect.com>

Author: Rob Carey <rcarey@securityinnovation.com>

Amy Jones <ajones@securityinnovation.com>

Project Manager: Garrett Jaynes <gjaynes@securityinnovation.com>

BOSTON | SEATTLE | PUNE

187 Ballardvale St., Suite A195 ● Wilmington, MA 01887 ● Ph: +1.978.694.1008

getsecure@securityinnovation.com ● www.securityinnovation.com

Contact Information

Security Innovation

Business Contact

Zack Hatfield

Business Development Director

zhatfield@securityinnovation.com

Technical Contact

Joe Basirico

Senior VP of Engineering

jbasirico@securityinnovation.com

Mobile: +1.206.227.6458

Project Management Contact

Garrett Jaynes

Senior Project Manager

gjaynes@securityinnovation.com

NetProtect

Wayne MacLaurin

wayne.maclaurin@netprotect.com

Page 2

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Executive Summary

Security Innovation performed a security assessment of Encrypt.Me on behalf of NetProtect.

This report summarizes the issues that were uncovered.

Encrypt.Me is a VPN application for iOS, Android, Firestick, Windows, and Mac, which allows

users to secure their private data by automatically encrypting their communications.

Security Innovation performed extensive testing of Encrypt.Me. At a high level, client

applications were thoroughly assessed for information leakage vulnerabilities common in VPN

applications, such as DNS, UPnP, WebRTC, the existence of pre-defined persistent routes, and

VPN killswitch effectiveness. Binary analysis was performed, including Windows reverse

engineering, mobile communications, and android unpacked .so file inspection. Specific mobile

platform testing was performed, such as examining secure handling of private user data. Host-

specific testing such as examining DLL signatures, open ports and services, and general attack

surface was also performed both on the Encrypt.Me application hosts and the provided private

endpoint Docker instance. All protocols and communication used by Encrypt.Me were heavily

analyzed using traffic inspection tools to identify any abnormalities, misconfigurations, or

vulnerabilities.

The overall security of Encrypt.Me was found to be highly robust. No sensitive customer

information leakages were identified, security controls were found to be thoroughly

implemented, and best security practices consistently followed. Additionally, the attack surface

of the VPN user was minimized by the absence of potentially-dangerous optional features, like

port forwarding.

Major observations are as follows:

A total of 2 security issues were identified:

PR1 - Information Disclosure

PR2 - DLL Hijacking

Two additional informational observations were discovered.

The most severe vulnerability identified was the use of unsigned DLL's

From a STRIDE perspective, issues were found from the Tampering, Information

Disclosure, and Elevation of Privilege categories .

If these vulnerabilities are not remediated, users of certain platforms may be at a greater

risk of having their host machines compromised under very specific scenarios.

Page 3

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Introduction

This report provides a summary of the findings discovered during the assessment. Each section

is briefly described below:

The Problem Report Summary section summarizes the issues discovered during the

engagement.

The Problem Reports section contains the full text of each verified findings.

The Observations section includes brief descriptions about less-severe or informational

findings.

The Executed Test Cases section lists a variety of performed tests and their observed

results.

The Tools section details the tools used during testing.

The Recommended Next Steps section provides our recommendations for additional

future testing of this system.

Page 4

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Report Summary

A total of 2 problems were identified. This section describes, at a high level, each of the

problems discovered. See the Problem Summaries section for a table of each problem

discovered, its severity, description and consequences. The following charts display the

number of problems for each level of severity, the number of problems for each STRIDE type

(note that a problem may have more than one type), and each problem's overall severity.

Critical High Medium Low Minimal
000

111

Problems Per Severity

Spoofing Tampering Repudiation Information

Disclosure

Denial of

Service

Elevation of

Privilege

000

111

Problems Per Type

Page 5

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Summaries

The problem report summaries are sorted by problem report ID. The format of the problem

report table is as follows:

The problem report ID

The component in which the issue was discovered

The severity of the issue

A short description of the issue

The consequences of the issue

PR

#
Component Severity Description Consequence

1
Android

Application
Minimal

The Encrypt.Me Android

application does not obfuscate its

screen when a user cycles through

applications.

The application may leak

sensitive information or reveal

the fact that an individual using

a VPN.

2
Windows

Client
Medium

Encrypt.Me is vulnerable to DLL

hijacking attacks.

An attacker can elevate their

privileges by running malicious

code within the Windows Client

process.

PR1 PR2

Minimal

Low

Medium

High

Critical

Severity of Each Problem

Page 6

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Reports

Below are the complete Problem Reports for all discovered issues.

Problem Report 1 - Information Disclosure

The Encrypt.Me Android application does not obfuscate its screen when a user cycles through

applications. The application may leak sensitive information or reveal the fact that an

individual using a VPN.

Component Android Application

STRIDE Information Disclosure

CWE CWE-200: Information Exposure

CVSS v2 Score 2.1 (AV:L/AC:L/Au:N/C:P/I:N/A:N)

CVSS v3 Score 2.1 CVSS:3.0/AV:P/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N

OWASP Reference OWASP Top 10 2017-A6: Security Misconfiguration

Overall Severity Minimal

Vulnerability Type Defense in Depth

Impact Low

Confidentiality The application leaks the fact that a VPN is in use and

could potentially leak other information.

Integrity This vulnerability does not impact data integrity.

Availability This vulnerability does not impact data availability.

Exposure This vulnerability represents a limited exposure to

exploitation.

Affected Users All users of the application are affected.

Likelihood Low

Skill Required No skill is required to exploit this vulnerability.

Conditions and Complexity An attacker would need to be physically near a user.

Discoverability This vulnerability is easy to discover.

Reproducibility This vulnerability is easy reproducible in all cases.

Background Information

Privacy-oriented applications often blur the application window when a user cycles through

applications in order to prevent the leakage of sensitive data. However, the presence of a

specific application could itself be highly sensitive, as is the case for individuals using Tor or a

VPN in countries with highly-oppressive governments.

Problem Details

During testing, Security Innovation observed that Encrypt.Me did not obfuscate its screen when

cycling through applications.

Test Steps

Page 7

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Test Configuration

The following is needed to reproduce this issue:

Log in to the application on an Android device

Steps to Reproduce

1. This vulnerability may be observed by logging in to the application on an Android device

and cycling through the application menus:

Page 8

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Page 9

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Remediation

Obfuscate the application. Security Innovation recommends blurring or otherwise

obfuscating the application when cycling in order to avoid the leakage of potentially sensitive

information.

Page 10

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Report 2 - DLL Hijacking

The Encrypt.Me is vulnerable to DLL hijacking attacks. This allows an attacker to elevate their

privileges by running malicious code within the Windows Client process.

Component Windows Client

STRIDE Tampering, Elevation of Privilege

CWE CWE-427: Uncontrolled Search Path Element

CAPEC CAPEC-251: Local Code Inclusion

CAPEC-471: DLL Search Order Hijacking

CVSS v2 Score 6.2 (AV:L/AC:H/Au:N/C:C/I:C/A:C)

CVSS v3 Score 6.4 CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H

Overall Severity Medium

Vulnerability Type Directly Exploitable

Impact High

Confidentiality By exploiting this vulnerability, an attacker can read any

data the application can access.

Integrity By exploiting this vulnerability, an attacker can create,

modify, or delete any data the application can access.

Availability By modifying a DLL used by the application, an attacker

can prevent the application from running.

Exposure An attacker can elevate their privileges to those of the

user running the Windows Client process.

Affected Users This can affect any user of the application.

Likelihood Low

Skill Required Exploiting this vulnerability requires a skilled attacker to

create the malicious DLL and install it in the proper

location of the operating system.

Conditions and Complexity This vulnerability requires the installation of a malicious

DLL on the target operating system via social

engineering, local access to the machine, or exploiting

another vulnerability in the system.

Discoverability This can be easily discovered by an attacker who has

access to an installation of Encrypt.Me.

Reproducibility This is 100% reproducible.

Background Information

Modern applications are generally not packaged as a single binary. Instead, they are composed

of a main executable (on Windows generally ending in ".exe") and many dynamic linking

libraries (generally ending in ".dll"). When loading a library, the executable will look first in the

application directory for the relevant .dll file before looking in other areas of the file structure.

As a result, an attacker can force the application to load a malicious library by giving it the

same name as a system library and placing it in the application's directory. Alternatively,

Page 11

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

unsigned DLLs may be replaced in-transit or after-deployment with malicious variants intended

for privilege escalation or persistent access.

Problem Details

Multiple DLLs used by the Windows client are not signed. As a result, there is no way for the

application to verify the integrity of DLLs.

Affected Areas

The following DLLs are not digitally signed:

CertEnroll.dll

CERTENROLLLib.dll

CertificateHelper.dll

DotRas.dll

Hardcodet.Wpf.TaskbarNotification.dll

IPCServiceLibrary.dll

PropertyProviders.dll

Serilog.dll

Serilog.Sinks.File.dll

Serilog.Sinks.Literate.dll

Serilog.Sinks.RollingFile.dll

Shared.dll

SQLite-net.dll

SQLitePCLRaw.batteries_green.dll

SQLitePCL.core.dll

SQLitePCLRaw.provider.e_sqlite3.dll

TopShelf.dll

Topshelf.Serilog.dll

WinSparkle.DotNet.dll

WpfPageTransitions.dll

This list may not include all instances of unsigned DLLs or shared objects. It is suggested that,

upon remediation, the development team review other areas of Encrypt.Me where similar

techniques are used in order to find and fix related vulnerabilities.

Remediation

Only load code from trusted sources. Before running code from an executable, library, or

other component, check if the component is signed. If it is not signed or is signed with an

invalid signature, do not load code from that component and fail over with the proper alerts.

Remove missing dependencies. References to libraries that are not used increase the

attack surface of the application while providing no practical benefit. As such, it is

recommended to remove references to DLLs that are not used by the application.

Page 12

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Windows - C/C++

Change the DLL search order. Applications can control the DLL search order and remove

insecure directories altogether. Early in process execution, call SetDllDirectory with an empty

string ("") to remove the current working directory from the DLL search order. In addition, use

SetSearchPathMode to ensure that SafeDllSearchMode is enabled for the process.

For more information on securing DLLs, visit the following link:

https://support.microsoft.com/en-us/help/2389418/secure-loading-of-libraries-to-prevent-dll-

preloading-attacks

Page 13

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Observations

In addition to the Problem Reports listed above, two additional informational findings were

observed. While not typically as severe as a Problem Report, Security Innovation recommends

that these, too, be addressed.

Observation 1 - Weak Password Policy

During account registration, it was observed that users could set their password to very

insecure words, such as the word "password." Although this is not directly related to the client,

such a low-complexity password requirement may lead to user compromises.

It is generally recommended to enforce at least basic password policies, such as a minimum of

eight characters and some mix of different types of characters.

Observation 2 - Trivial Decompilation

In testing the Windows client, it was observed that the client was trivially decompilable with

free commercial software like DotPeek, with fully-named and unobfuscated functions. Since

any user could do this to greatly expedite their ability to find vulnerabilities in the

implementation across all clients, it is strongly recommended to employ some form of code

obfuscation to achieve greater defense-in-depth.

Page 14

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Executed Test Cases

The following table shows the breakdown of executed test cases, including any problem reports

relevant to that item, and gives a brief summary of the methodology used to check that item

and any other observations.

Column descriptions are as follows:

Test ID - An identifier for quick test case reference

Test Title - A title describing the test case

Test Description - A short description of the test case and why it was performed

Outcome- Either 'Pass' or a reference to the Observation/PR Number

Test

ID Test Title Test Description Outcome

1 IP Leakage - DNS Ensure that a malicious user cannot coerce a

victim to reveal their true IP via DNS requests.

PASS

2 IP Leakage - UPNP Confirm that UPNP cannot be used to set

localized port forwarding that may be detected

out-of-band to determine a user's identity.

PASS

3 IP Leakage -

WebRTC/STUN

Verify that WebRTC requests cannot be made

which provide malicious websites information

about the user's true IP address.

PASS

4 Route Persistence Determine if pre-existing or manually-created

persistent routes with sufficiently high priority

are ignored while the VPN is enabled.

PASS

5 IP Leakage - Port

Forwarding/PortFail

Verify that the VPN provider does not allow for

insecure port forwarding, which can lead to IP

disclosure attacks such as PortFail.

N/A

6 IP Leakage - Protocol

Changes

Check that server HTTP Protocol changes

cannot be performed in such a manner as to

coerce the browser to bypass the VPN tunnel.

PASS

7 IP Leakage - IPv6 Ensure that IPv6 traffic does not reveal the

user's true identity.

N/A

8 Insecure Installation Oversee the installation process to ensure that

no timing attacks exist, sensible object

permissions are established, and no

unnecessary attack surface is added to the

system.

PASS

9 Unsigned DLLs Confirm that all DLLs and other shared object

files in-use by the application have their

integrity validated via digital signatures.

PR 2

10 Insecure

Services/Daemons

Determine whether all services or daemons

installed by the VPN are given appropriate

permissions and secure paths.

PASS

Page 15

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

11 VPN Killswitch Bypass Identify if there is any way to induce a fail-

insecure state, where the VPN is disabled due

to a crash but the user may continue browsing

exposed.

PASS

12 Insecure Updating Validate the update methods used by the

clients to ensure that they are done over

secure, verified channels, such as TLS.

PASS

13 Insecure Support

Channel

Confirm that any in-client support requests are

conducted over TLS, do not disclose

unnecessarily sensitive information about the

end-user, and do not bypass the VPN

functionality if it is currently running.

PASS

14 Transport Security of

All Traffic

Verify that all web traffic in all clients is

conducted over TLS when interfacing with any

telemetry or reporting endpoints.

PASS

15 Local Storage of

Credentials

Validate that local credentials are not stored

insecurely, such as in plaintext/public

locations.

N/A

16 Binary Analysis -

Decompilation

Determine if the application may be trivially

decompiled and reversed via free and easily-

available software

Observation

1

17 Binary Analysis -

Insecure Logging

Verify that logs created by the applications do

not contain sensitive customer information or

sensitive system information.

PASS

18 Binary Analysis - Hard

Coded Secrets

Inspect the application to locate any existing

hard coded secrets, such as credentials or

connection strings.

PASS

19 Binary Analysis -

Android .SO

Decompilation

Discover if any secrets or easily reversed

information can be gleamed by unzipping the

android APK client and decompiling its shared

objects.

PASS

20 Mobile Data Storage Validate the security of locally stored data

within the mobile application.

PASS

21 Mobile Privacy Testing Ensure that any relevant privacy features are

applied to the mobile clients to protect the

user.

PR 1

22 Verbose Error

Messages

Verify that the application cannot be made to

crash or fail in such a way as to reveal

sensitive user- or system-data to third parties,

logs, or local users.

PASS

Test

ID Test Title Test Description Outcome

Page 16

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Tools

While testing Encrypt.Me, the following tools were employed:

Tool Description Link

Burp Suite

Professional

Interactive HTTP/S proxy server

that can intercept, inspect and

modify data between the browser

and target web server

https://portswigger.net/burp/

Wireshark Gold standard of network sniffers

and analysis

https://www.wireshark.org/

cURL Command line tool for transferring

files with URL syntax, supporting

FTP, FTPS, HTTP, HTTPS, SCP, SFTP,

TFTP, TELNET, DICT, LDAP, LDAPS

and FILE

https://curl.haxx.se/

Python High level, general purpose,

scripting language

https://www.python.org

Detect-it-Easy Windows application to determine

compilation information about an

executable

https://ntinfo.biz

x64dbg Windows dynamic analysis and

debugging tool for reverse

engineering

https://x64dbg.com

DotPeek DotNet framework decompiler for

static analysis

https://www.jetbrains.com/decompiler/

IDA Pro Cross-platform static- and dynamic-

analysis code disassembler and

decompiler

https://www.hex-

rays.com/products/ida/

Page 17

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Recommended Next Steps

This section contains our recommendations for areas that may benefit from additional testing.

For each section, we describe why it is important to test these sections, either more thoroughly

or for the first time.

Code-Assisted Penetration Test - Security Innovation recommends a code-assisted

penetration test of the Encrypt.Me application. This will allow for a more comprehensive audit

of the application. In addition, it will potentially identify insecure coding patterns and other

coding issues, which would not be possible in a black-box penetration test.

Server Review - Over the course of the penetration test, the various VPN clients were the

primary targets of review. Although some time was allocated to inspect, stand up, and test the

provided docker image to create a user-hosted VPN server, this was not the primary focus of

the engagement. Since a compromise within a VPN server could potentially reveal sensitive

information about all active users, this should be taken as a high priority target in future

assessments.

Page 18

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Follow-up

Inconsistencies, errors, and reproducibility problems associated with this report should be

directed through the customer contact person to the tester and preparer indicated at the

beginning of this report.

Page 19

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

	Contact Information
	Security Innovation
	Business Contact
	Technical Contact
	Project Management Contact

	NetProtect

	Executive Summary
	Introduction
	Problem Report Summary
	Problem Summaries

	Problem Reports
	Problem Report 1 - Information Disclosure
	Background Information
	Problem Details
	Test Steps
	Test Configuration
	Steps to Reproduce

	Remediation

	Problem Report 2 - DLL Hijacking
	Background Information
	Problem Details
	Affected Areas

	Remediation
	Windows - C/C++

	Observations
	Observation 1 - Weak Password Policy
	Observation 2 - Trivial Decompilation

	Executed Test Cases
	Tools
	Recommended Next Steps
	Follow-up

